Given decades of post-PhD career trajectory data, what can we learn about the evolution of careers in computing research at the levels of individuals, organizations, and sectors?

Motivations
- CS research careers are important but not well-studied
- Career analysis models generalize to other fields
- Analysis can inform employer recruitment/retention

Typical model: Transition network
- Nodes: Organizations
- Edges: Directed, weighted by flow volume between orgs

Proposed network model
- \(R^2 \): Resources, Retention, Relative growth
- Transforms edge weights with career-specific factors
- HITS [1] node ranking on the \(R^2 \) network identifies:
 - Hubs: Employer “producers”
 - Authorities: Employer “consumers”

1. System-wide evolution
 - Compute HITS in 5-yr intervals on transition and \(R^2 \) networks
 - Regress pairs of HITS scores, identify highest deviations in the top 50 hubs/authorities

2. Cross-sector career movement
 - Compute HITS in 5-yr intervals on transition and \(R^2 \) networks
 - While 2/3 of cross-sector transitions are academia \(\rightarrow \) industry, there’s significant asymmetry in transition patterns

3. Individual retention prediction
 - Will an individual transition within the next \(n \) years?
 - Features extracted from individual career trajectory (IND), transition network \((G_f) \), and \(R^2 \) network \((R^2) \)

Data
- 1970 – 2015: \(\sim 7k \) PhDs in EECS, 17+ records
- Top 50 US computer science graduate programs
- Profiles validated by ProQuest
- We made 2 datasets public: http://bit.ly/2M6InO

References and Acknowledgments

Contact: tsafavi@umich.edu